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What are discontinuous Galerkin schemes?

Discontinuous Galerkin schemes are a class of Galerkin schemes in which
the solution is represented using piecewise discontinuous functions.

Galerkin minimization

Piecewise discontinuous representation

Goal of this lecture is to understand conceptual meaning of discontinuous
Galerkin schemes and understand how to use them to solve PDEs. Much is
left out as the literature on DG is vast, but will aim to cover key
conceptual ideas. Outline

Discontinuous Galerkin representation, recovery and weak-equalities

DG scheme for linear advection and extension to Maxwell equations.
Aspects of DG for nonlinear problems

Application of DG to plasma kinetic equations
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Discontinuous Galerkin algorithms represent state-of-art
for solution of hyperbolic partial differential equations

DG algorithms hot topic in CFD and applied mathematics.

First introduced by Reed and Hill in 1973 as a conference paper to solve
steady-state neutron transport equations. More than 2100 citations.

Some earlier work on solving elliptic equations by Nitsche in 1971 (original
paper in German). Introduced the idea of “interior penalty”. Usually,
though, DG is not used for elliptic problems. Paradoxically, perhaps DG may
be even better for certain elliptic/parabolic problems.

Key paper for nonlinear systems in multiple dimensions is by Cockburn and
Shu (JCP, 141, 199-224, 1998). More than 1700 citations.

Almost continuous stream of papers in DG, both for fundamental
formulations and applications to physics and engineering problems. This
continues to be an active area of research, and at present DG is
under-utilized in plasma physics.
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

There two key ingredients in a Galerkin scheme: selection of a finite-dimensional
space of functions and a definition of errors.

Consider a interval [−1, 1]. On this, we can choose Legendre polynomials
Pl(x) up to some order l < N as a basis-set.

We need to define a way to measure errors on this function space. One way
to do this is to select an inner product and then use it to define a norm. For
example consider the inner-product

(f, g) =

∫ 1

−1

f(x)g(x) dx

using which we can define the L2 norm

‖f‖2 = (f, f)

Once we have selected the finite-dimensional space of functions and a norm, we
can use it to construct a Galerkin method.
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Consider a general time-dependent problem on x ∈ [−1, 1]:

f ′(x, t) = G[f ]

where G[f ] is some operator. To approximate it expand f(x) with our basis
functions Pk(x),

f(x, t) ≈ fh(x, t) =

N∑
k=1

fk(t)Pk(x)

This gives discrete system

N∑
k=1

f ′kPk(x) = G[fh]

Question

How to determine f ′k in an optimum manner?
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Answer: Do an L2 minimization of the error, i.e. find f ′k such that the error as
defined by our selected norm is minimized.

EN =

∥∥∥∥∥
N∑

k=1

f ′kPk(x)−G[fh]

∥∥∥∥∥
2

=

∫ 1

−1

[
N∑

k=1

f ′kPk(x)−G[fh]

]2

dx

For minimum error ∂EN/∂f
′
m = 0 for all k = 1, . . . , N . This leads to the linear

system that determines the coefficients f ′k∫ 1

−1

Pm(x)

(
N∑

k=1

f ′kPk(x)−G[fh]

)
dx = 0

for all m = 1, . . . , N . This will give

f ′k =
2k + 1

2

∫ 1

−1

Pk(x)G[fh] dx
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What does a typical L2 fit look like for Galerkin scheme?

Consider finding the best-fit on finite-dimensional space for the function
f(x) = 3 + (x− 0.5)4 + 2x3 − 5x2 on x ∈ [−1, 1]. Choose normalized
Legendre polynomials as basis functions.

Figure: Best L2 fit with p = 0, p = 1, p = 2 and p = 4 for f(x) = 3 + (x− 0.5)4 + 2x3 − 5x2

on x ∈ [−1, 1].
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What does a typical L2 fit look like for discontinuous
Galerkin scheme?

In discontinuous Galerkin schemes we split interval into cells and use
Galerkin scheme in each cell. This will naturally lead to discontinuities
across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and quadratic (right) basis
functions.
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Weak-equality and recovery

It is important to remember that the discontinuous Galerkin solution is a
representation of the solution and not the solution itself.

Notice that even a continuous function will, in general, have a discontinuous
representation in DG.

We can formalize this idea using the concept of weak-equality. Consider an interval I
and select a finite-dimensional function space on it, spanned by basis functions ψk,
k = 1, . . . , N . Choose an inner product, for example

(f, g) ≡
∫
I

f(x)g(x) dx.

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk, f − g) = 0

for all k = 1, . . . , N . We denote weak equality by

f
.
= g.
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Weak-equality and recovery

Notice that weak-equality depends on the function space as well as the
inner-product we selected.

The Galerkin L2 minimization is equivalent to, for example, restating that

f ′(x, t)
.
= G[f ]

This implies (
ψk, f

′(x, t)−G[f ]
)
= 0

which is exactly what we obtained by minimizing the error defined using the L2

norm.

Hence, we can say that the DG scheme only determines the solution in the
weak-sense, that is, all functions that are weakly equal to DG representation can be
potentially interpreted as the actual solution.

This allows a powerful way to construct schemes with desirable properties by
recovering weakly-equal functions using the DG representations.
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Example of recovery: Exponential recovery in a cell

Consider we have a linear representation of the particle distribution
function fh(x) = f0 + xf1 in a cell.

We can use this to reconstruct an exponential function that has the
desirable property that it is positive everywhere in the cell. That is, we
want to find

exp(g0 + g1x)
.
= f0 + xf1

This will lead to a coupled set of nonlinear equations to determine g0
and g1

Note that this process is not always possible: we need f0 > 0 as well
as the condition |f1| ≤ 3f0. Otherwise, the fh is not realizable (i.e.
there is no positive distribution function with the same moments as
fh).
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Example of recovery: Exponential recovery in a cell

Figure: Recovery of exponential function (black) from linear function (red). Left plot is for
f0 = 1, f1 = 1 and right for f0 = 1 and f1 = 2.
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Discontinuous Galerkin scheme for linear advection

Consider the 1D passive advection equation on I ∈ [L,R]

∂f

∂t
+ λ

∂f

∂x
= 0

with λ the constant advection speed. f(x, t) = f0(x− λt) is the exact
solution, where f0(x) is the initial condition. Designing a good scheme is
much harder than it looks.

Discretize the domain into elements Ij ∈ [xj−1/2, xj+1/2]

Pick a finite-dimensional function space to represent the solution. For
DG we usually pick polynomials in each cell but allow discontinuities
across cell boundaries

Expand f(x, t) ≈ fh(x, t) =
∑

k fk(t)wk(x).
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Discrete problem can be stated as finding the coefficients
that minimize the L2 norm of the residual

The discrete problem in DG is stated as: find fh in the function space such
that for each basis function ϕ we have∫

Ij

ϕ

(
∂fh
∂t

+ λ
∂fh
∂x

)
dx = 0.

Integrating by parts leads to the discrete weak-form∫
Ij

ϕ
∂fh
∂t

dx+ λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

Here F̂ = F̂ (f+h , f
−
h ) is the consistent numerical flux on the cell boundary.

Integrals are performed using high-order quadrature schemes.
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To account for flow across cell-boundary, need to select
numerical flux

Take averages (central fluxes)

F̂ (f+
h , f

−
h ) =

1

2
(f+

h + f−h )

Use upwinding (upwind fluxes)

F̂ (f+
h , f

−
h ) = f−h λ > 0

= f+
h λ < 0
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Example: Piecewise constant basis functions lead to
familiar difference equations

A central flux with piecewise constant basis functions leads to the
familiar central difference scheme

∂fj
∂t

+ λ
fj+1 − fj−1

2∆x
= 0

An upwind flux with piecewise constant basis functions leads to the
familiar upwind difference scheme (for λ > 0)

∂fj
∂t

+ λ
fj − fj−1

∆x
= 0

Solution is advanced in time using a suitable ODE solver, usually
strong-stability preserving Runge-Kutta methods. (See G2 website)
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Example: Piecewise constant basis functions with central
flux leads to dispersive errors

Figure: Advection equation solution (black) compared to exact solution (red) with central fluxes
and piecewise constant basis functions.
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Example: Piecewise constant basis functions with upwind
flux is very diffusive

Figure: Advection equation solution (black) compared to exact solution (red) with upwind fluxes
and piecewise constant basis functions.
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Passive advection with piecewise linear basis functions

To get better results, we can use piecewise linear polynomials instead. That is,
select the basis functions

ϕ ∈ {1, 2(x− xj)/∆x}

In terms of which the solution in each cell is expanded as
fj(x, t) = fj,0 + 2fj,1(x− xj)/∆x. With this, some algebra shows that we have
the update formulas for each stage of a Runge-Kutta method

fn+1
j,0 = fnj,0 − σ

(
F̂j+1/2 − F̂j−1/2

)
fn+1
j,1 = fnj,1 − 3σ

(
F̂j+1/2 + F̂j−1/2

)
+ 6σfj,0

where σ ≡ λ∆t/∆x. As these are explicit schemes we need to ensure time-step is
sufficiently small. Usually, we need to ensure σ = λ∆t/∆x ≤ 1/(2p+ 1).
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Passive advection with piecewise linear basis functions

Figure: Advection equation solution (black) compared to exact solution (red) with upwind fluxes
and piecewise linear basis functions.

In general, with upwind fluxes and linear basis functions numerical diffusion
goes like |λ|∆x3∂4f/∂x4.

http://www.ammar-hakim.org/sj (PPPL) Intro to DG 8/14/2020 20 / 42



Good numerical methods should inhert some properties
from the continuous equations

From the continuous passive advection equation we can show that, on a
periodic domain the total particles are conserved

d

dt

∫
I
f dx = 0

Also, the L2 norm of the solution is also conserved

d

dt

∫
I

1

2
f2 dx = 0

We would like to know if our discrete scheme inherits or mimics these
properties. Sometimes, methods in which the discrete scheme inhert
important properties from the continuous equations are called mimetic
methods. However, note that in general it is impossible to inhert all
properties and often it is not desirable to do so.
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To prove properties of the discrete scheme start from
discrete weak-form

To understand properties of the scheme we must (obviously) use the discrete weak-form
as the starting point.∫

Ij

ϕ
∂fh
∂t

dx+ λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

A general technique is to use a function belonging to the finite-dimensional function
space as the test function ϕ in the discrete weak-form.
Example: consider we set ϕ = 1. Then we get∑

j

∫
Ij

∂fh
∂t

dx+ λ
∑
j

(
F̂j+1/2 − F̂j−1/2

)
= 0.

The second term sums to zero and so we have shown that

d

dt

∑
j

∫
Ij

fh dx = 0.
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To prove properties of the discrete scheme start from
discrete weak-form

Now, consider we use the solution itself as the test function. We can do this as the
solution, by definition, belongs to the finite-dimensional function space. We get∑

j

∫
Ij

fh
∂fh
∂t

dx+
∑
j

(
f−hj+1/2F̂j+1/2 − f+

hj−1/2F̂j−1/2

)
−
∑
j

∫
Ij

dfh
dx

fh dx = 0

We can write the last term as∑
j

∫
Ij

1

2

d

dx
f2
h dx =

1

2

∑
j

[(
f−hj+1/2

)2
−
(
f+
hj−1/2

)2]
If we use upwind fluxes we can show that we get

d

dt

∑
j

∫
Ij

f2
h dx = −

∑
j

(
f−hj+1/2 − f

+
hj−1/2

)2
≤ 0.

Hence, the L2 norm of the solution will decay and not remain constant. However, this is
the desirable behavior as it ensures L2 stability of the discrete system. With central
fluxes the L2 norm is conserved. (Prove this)
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Summary of DG schemes for passive advection equation

Pick basis functions. These are usually piecewise polynomials, but
could be other suitable functions.

Construct discrete weak-form using integration by parts.

Pick suitable numerical fluxes for the surface integrals.

Use Runge-Kutta (or other suitable) schemes for evolving the
equations in time.

To prove properties of the scheme, start from the discrete weak-form
and use appropriate test-functions and simplify.
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For 1D linear hyperbolic systems extension of scheme is
straightforward

Consider the 1D source-free Maxwell equations

∂

∂t

[
Ey

Bz

]
+

∂

∂x

[
c2Bz

Ey

]
= 0.

Basic idea is to transform the equation into uncoupled advection equations
for the Riemann variables. This is always possible for linear hyperbolic
systems. For the above system, multiply the second equation by c and add
and subtract from the first equation to get

∂

∂t
(Ey + cBz) + c

∂

∂x
(Ey + cBz) = 0

∂

∂t
(Ey − cBz)− c

∂

∂x
(Ey − cBz) = 0.

Note that these are two uncoupled passive advection equations for the
variables w± = Ey ± cBz with advection speeds ±c. Hence, we can use
scheme for passive advection to construct a scheme for this system.
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Choice of numerical fluxes for Maxwell equations impacts
energy conservation

The electromagnetic energy is given by

E =
ε0
2
E2

y +
1

2µ0
B2

z

Notice that this is the L2 norm of the electromagnetic field.

Hence, as we showed for the passive advection equation, if we use
upwinding to compute numerical fluxes, the electromagnetic energy
will decay.

If we use central fluxes (average left/right values) then the EM energy
will remain conserved by the time-continuous scheme. However, the
Runge-Kutta time-stepping will add small diffusion that will decay the
total energy a little.

However, the energy decay rate will be independent of the spatial
resolution and will reduce with smaller time-steps.

(Run code. Show 2D advection movies before moving to RDG.)
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How to discretize parabolic equations with DG?

DG is traditionally used to solve hyperbolic PDEs. However, DG is also very good
for the solution of parabolic PDEs.

One challenge here is that parabolic PDEs have second derivatives and it is not
clear at first how a discontinuous representation can allow solving such systems.

Consider the diffusion equation (subscripts represent derivatives)

ft = fxx

Choose function space and multiply by test function in this space to get weak form∫
Ij

ϕft dx = ϕfx

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕxfx dx.

In DG, as f is discontinuous, it is not clear how to compute the derivative across the
discontinuity at the cell interface in the first term. (See SimJ JE16).
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Lets revisit weak-equality and recovery

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk, f − g) = 0

for all k = 1, . . . , N . We denote weak equality by

f
.
= g.

Recall that the DG solution is only a representation of the solution and not
the solution itself. Hence, we can consider the following “inverse” problem:
given a discontinuous solution across two cells, is it possible to recover a
continuous representation that can then be used in the above weak-form?
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Use weak-equality to recover continuous function

Figure: Given piecewise linear representation (black) we want to recover the continuous function
(red) such that moments of recovered and linear representation are the same in the respective
cells.
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Use weak-equality to recover continuous function

Consider recovering f̂ on the interval I = [−1, 1], from a function, f , which has a
single discontinuity at x = 0.

Choose some function spaces PL and PR on the interval IL = [−1, 0] and
IR = [0, 1] respectively.

Reconstruct a continuous function f̂ such that

f̂
.
= fL x ∈ IL on PL

f̂
.
= fR x ∈ IR on PR.

where f = fL for x ∈ IL and f = fR for x ∈ IR.

To determine f̂ , use the fact that given 2N pieces of information, where N is the
number of basis functions in PL,R, we can construct a polynomial of maximum
order 2N − 1. We can hence write

f̂(x) =

2N−1∑
m=0

f̂mx
m.

Plugging this into the weak-equality relations gives a linear system for f̂m.
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Use recovered function in weak-form

Once we have determined f̂ we can use this in the discrete weak-form of
the diffusion equation:∫

Ij

ϕft dx = ϕf̂x

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕxfx dx.

Note that now as f̂ is continuous at the cell interface there is no issue in
computing its derivative. We can, in fact, do a second integration by parts
to get another discrete weak-form∫

Ij

ϕft dx = (ϕf̂x − ϕxf̂)

∣∣∣∣xj+1/2

xj−1/2

+

∫
Ij

ϕxxf dx.

This weak-form has certain advantages as the second term does not
contain derivatives (which may be discontinuous at cell boundary).
(Explicit formula for p = 0 case)
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Another look at computing numerical fluxes

To design a scheme for the diffusion equation we used a recovery
procedure to compute the edge values and slopes

Can this process be used to compute numerical fluxes for use in
updating advection equations? Potentially much more accurate
scheme for smooth solution.

Recall discrete weak-form of advection equation∫
Ij

ϕ
∂fh
∂t

dx+ λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

Instead of using upwinding or central fluxes, we can use recovered
polynomial at each cell interface to compute F̂j±1/2.
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A different way to design a recovery scheme for advection

Consider the general problem of recovering a higher-order function given
three neigbor values. We will use the following procedure. Label the three
cells IL, I0 and IR.

First, compute two recovery polynomials. One across the pair of cells
IL, I0 and another across the cells I0, IR.

Now, construct a polynomial f̂ in cell I0 such that

f̂
.
= f in cell I0

and such that the slopes of f̂ on the edges of the cell match the
slopes (and values) of the two recovered polynomials.

For a p order scheme, we have p+ 1 + 2 pieces of information and so
can recover a p+ 2 order polynomial.

(Run code)
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This leads to a differential form of the DG scheme

Now that we have the recovered polynomial f̂ we can use this directly to
design a update formula for the advection equation without need to derive
the discrete weak-form. (

ψk, ft
)

= −
(
ψk, f̂x

)
Note that this is system of ODEs for the expansion coefficients fk and we
can update them using Runge-Kutta or other time-steppers. (Run code)
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Putting everything together: how to solve the
Vlasov-Maxwell equation using DG?

We would like to solve the Vlasov-Maxwell system, treating it as a
partial-differential equation (PDE) in 6D:

∂fs
∂t

+∇x · (vfs) +∇v · (Fsfs) = 0

where Fs = qs/ms(E + v ×B). The EM fields are determined from
Maxwell equations

∂B

∂t
+∇×E = 0

ε0µ0
∂E

∂t
−∇×B = −µ0J
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Question: Can we solve the VM system efficiently while
conserving important invariants?

We know that the Vlasov-Maxwell system conserves, total number of
particles; total (field + particle) momentum; total (field + particle) energy;
other invariants. Can a numerical scheme be designed that retains (some
or all) of these properties?

For understanding solar-wind turbulence and other problems, we would like
a noise-free algorithm that allows studying phase-space cascades correctly,
in a noise-free manner.
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We use DG for both Vlasov and Maxwell equations

Start from Vlasov equation written as advection equation in phase-space:

∂fs
∂t

+∇z · (αfs) = 0

where advection velocity is given by α = (v, q/m(E + v ×B)).

To derive the semi-discrete Vlasov equation using a discontinuous Galerkin
algorithm, we introduce phase-space basis functions w(z), and derive the
discrete scheme:∫

Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS −
∫
Kj

∇zw ·αhfh dz = 0
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We use DG for both Vlasov and Maxwell equations

Multiply Maxwell equations by basis ϕ and integrate over a cell. We have terms
like ∫

Ωj

ϕ∇×E︸ ︷︷ ︸
∇×(ϕE)−∇ϕ×E

d3x.

Gauss law can be used to convert one volume integral into a surface integral∫
Ωj

∇× (ϕE) d3x =

∮
∂Ωj

ds× (ϕE)

Using these expressions we can now write the discrete weak-form of Maxwell
equations as∫

Ωj

ϕ
∂Bh

∂t
d3x +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇ϕ×Eh d
3x = 0

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
d3x−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇ϕ×Bh d
3x = −µ0

∫
Ωj

ϕJh d
3x.
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Is energy conserved? Are there any constraints on basis
functions/numerical fluxes?

Answer: Yes! If one is careful. We want to check if

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
j

∫
Ωj

(
ε0
2
|Eh|2 +

1

2µ0
|Bh|2

)
d3x = 0

Proposition

If central-fluxes are used for Maxwell equations, and if |v|2 is projected to the
approximation space, the semi-discrete scheme conserves total (particles plus
field) energy exactly.

The proof is rather complicated, and needs careful analysis of the discrete
equations (See Juno et. al. JCP 2018)

Remark
If upwind fluxes are used for Maxwell equations, the total energy will decay
monotonically. Note that the energy conservation does not depend on the fluxes
used to evolve Vlasov equation.
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Is momentum conserved?

Answer: No. Errors in momentum come about due to discontinuity in
electric field at cell interfaces. However, momentum conservation errors are
independent of velocity space discretization, and drop rapidly with
increasing configuration space resolution.
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Entropy increases monotonically

In order to correctly understand entropy production, one needs to ensure
that discrete scheme either maintains or increase entropy in the
collisionless case. We can show

Proposition

If the discrete distribution function fh remains positive definite, then the
discrete scheme grows the discrete entropy monotonically∑

j

d

dt

∫
Kj

−fh ln(fh) ≥ 0
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Some Parting Thoughts and All the Best!

Here are some personal parting thoughts on computational physics:

Computational physics is a rapidly evolving field, with major investments
being made across the world. Good field to be in!

Strive for technical excellence. Do not settle for existing methods or tools
and spend time in understanding deeply both the physics of the equations
and the numerics used to solve them. Go beyond your classwork and thesis
reasearch (make it a point to read arxiv physics.comp-ph and math.NA
postings every day).

Modern computational physics is moving to C++: please learn it. Use good
software practices (write modular code, use version control, build systems,
regression tests). Even for your thesis code!

To become really good you must apprentice yourself to a genuine expert.

If you become an expert at the (i) physics (ii) mathematics of the numerical
methods (iii) programming and software techniques, you will be in a very
strong position to contribute to development in many different fields. You
will bring unique skills which few other people will be able to match.
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