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PROBLEMS

4-2a Sketch the locations of a, v, and x for the alternative integrator,

v — v
S LG, arma) an
XipA; — X 1
;—4—‘;?_! = E(VHA: +v) (12
Show that this integrator produces a frequency for the simple harmonic oscillator (1) of
) (woAr)?

+ - (13)

m:‘-w01+%(w0Af)2+/ 3
Hint: Use x,4,ar=2%"x, z =exp(—iwAt) and write (11) and (12) as a matrix. Set the
determinant of the coefficients equal to zero to produce an equation in z(cubic) to be solved.
The phase error is four times larger than that of the leap-frog scheme, and there is mild growth.
Show how (with a sketch, as in Figure 2-4a) At can be halved or doubled in one step. This
method has the disadvantage of requiring storage of the previous acceleration a,_,, in addition
to previous velocity v, and position x,.

4-2b Discuss the possible use of integer arithmetic (no floating point) in the mover, with some
care as to the number of bits needed for reasonable accuracy. Keep in mind that small changes
are lost; that is, nothing happens uniess vAt exceeds the least step in x and aAt exceeds the
least velocity. Hint: 17 bits is marginal or fatal in quiet start. This coding was exploited by Esta-
brook and Tull (1980) for very high speed, almost twice as fast on the CDC-7600 (in machine
language) as ES1 is on the CRAY-I (in FORTRAN)!

4-3 NEWTON-LORENTZ FORCE;
THREE-DIMENSIONAL v x B INTEGRATOR

The particle equations of motion to be integrated are

m%=q(E+va) 1
dx _
=Y (2)

We desire a centered-difference form of the Newton-Lorentz equations of
motion. The magnetic term is centered by averaging v,_,,/2 and v a2, fol-
lowing Buneman (1967). The other terms are treated as before. Hence, (¢))]
becomes

Vietar/2 — Yi-ay2 _ 4 E + Va2 T Vi—ay2 x B 3)
At m 2

This vector equation for v, can be solved as three simultaneous scalar
equations, one for each component. Instead, we choose to obtain a simpler
solution using several steps.

The first method (Buneman, 1967) is to subtract the drift velocity
E x B/ B?from v, as

4.3 NEWTON-LOREN

“ ) ExB
Vold = Vi-a1/2 B2
v .—y. _ExB
new — Yi+A1/2 R?
Similar to (1), this leaves just a rotation of v, and free acceleration
Vaew — Yold _q Voew T ¥oig
X E,+ 3 B

We discuss the rotation in Problem 4-3a and Section 4-4.
Another method separates the electric and magnetic forces ¢
(Boris, 1970b). Substitute
Vorn=y-— 4E At
—At/2 m 2
E At
v =yt4 4221
I+AI/2 m 2
into (3); then E cancels entirely (not just E ), which leaves

vi—v~

At

which is a rotation (see Problem 4-3a). The steps to compute are
the electric impulse to v,_,,/; using (7) to obtain v7; rotate accord
to obtain v*, and add the remaining half of the electric impulse (8)
V.+a,2. These are the same steps, motivated differently, as in Se
Separation of parallel and perpendicular components is not nes
Boris’ method, and the relativistic generalization is straightforward.

Finally, we check the angle of rotation @ which we expect to b
w,At = gBAt/ m. By inspection of Figure 4-3a, we see that

=-LG*+v)xB
2m
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where we have used (9) in the last step. Hence, the difference eq
produces a rotation through angle

2
6 = 2 arctan q_j%] =wcAl'1 _ (wc—ﬁf) N

12

which has less than one percent error for w At < 0.35.

PROBLEMS
4-3a Show that (9) is only a rotation of v. Hint: take the scalar product of (9) with (

4-3b Consider a model with Bg uniform and E| = 0, in which a particle at speed v
motion in the x; plane. Let the orbit be followed by (subscripts refer to time steps)



60 INTRODUCTION TO THE NUMERICAL METHODS USED

Figure 4-3a Knowing that (9) represents a rotation, we construct this diagram, from which
tan (9/2) is readily obtained.
xt—x% _ v X
At At
with v* obtained from

vi—v~

ar

vi+ v
2

x[g&
m

as shown in Figure 4-3b. Using tane from this figure [Hint: see (10)], show that

_ _lana
Yo AL

which is (tana)/« if we ask that the mover produce the correct gyrophase, a = w At/2.

Next, requiring that the gyroradius and period be reproduced correctly, show that

sin a
[+

W =lvl=v

Last, show that when E is included, the A multiplier appears as A(E| + v X B) in order to pro-
duce the correct Ex B/ B2 drift. [These ideas came from Hockney (1966), Buneman (1967),
and R. H. Gordon (unpublished Berkeley seminar, 1971).]

4-3¢ (Due to R. H. Gordon). Using any of the v X B integrators given here, for uniform ByZ,

plot particle orbits in the x, y plane:

(a) Without the tana/a correction, supposedly with a integral number of steps per cyclotron
period; note where points on the second and succeeding cycles are with respect to those on
the first.

(b) Repeat (a) with tana /[ a correction; try 0 < a < .

(¢) Like (b), with w At = 2m; compare with true orbit; explain the motion; is this instability?

(d) Like (b), with w At = 27 — &; compare with true orbit; explain the motion.

4-4 IMPLEMENTATION OF THE vx B

Figure 4-3b Velocities and positions in the plane normal to the uniform magnetic f
E, =0 in which the particle orbit is a circle (cyclotron motion). The compu
difference orbit is made up of straight line segments connecting old and new positio

4-4 IMPLEMENTATION OF THE v x B ROTATION

First consider the case in which B is parallel to the z axis. I
plane the rotation is through an angle # where

6 __4gBA:
fan 2 m 2
This gives a good approximation to rotation angle § when 6 is nof
[4-3(11)], and is convenient when B is not constant. In ES1, B
we evaluate tanf/2 = —tan (¢gBAt/2m); obtaining the correc
angle costs nothing more.
Now we use this value of tan8/2 in the half-angle formulas
cos @ and sin @ for the velocity rotation. Letting

9
t=—tan —
n5

we have

§ = —sinf = 2t

— |
~
o
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t2

c =cosf = T 4)

The rotation becomes
vt =cve + sy, ()
vt =—svo + oy (6)

The mover requires no evaluation of transcendental func_:tions, which is a
significant time saving when B is not constant. Equations (3) to (6)
require 7 multiplies, 1 divide, and 5 adds. Buneman (1973) reduces this to:

V= + vt @)
wh= v — vis (8)
v = v+ e (9

with 4 multiplies, 1 divide, and § adds. The saving of 3 multiplies per parti-
cle per time step is desirable. ‘ o

When the directions of B and v are arbitrary, a convenient rotation in
vector form is described by Boris (1970). First v™ is incremented to produce
a vector v' which is perpendicular to (vt — v7) and B (see Figure 4-4a).

v=v +v Xt (10)

The angle between v~ and v' is just 6/ 2, therefore the vector t is seen from
Figure 4-4a to be given by

¢B % an

m

— 1 0
t= btan2

Finally, v¥ — v~ is parallel to v' X B, so

Figure 4-4a Velocity space showing the rotation from v~ to v*. The velocities shown are projec-
tions of the total velocities onto the plane perpendicular to B.

4-4 IMPLEMENTATION OF THE vx B

vi=v +vxs

where s is parallel to B and its magnitude is determined by the r¢
V=12 = |v*?
v A\
_ 2t
1+ 2
Boris’ algorithm is readily made relativistic; see Chapter 15.

PROBLEMS
4-4a Verify that (7) - (9) has the same result as (5) and (6).
4-4b Using |[v*| = |[v7| (a rotation), obtain s (13).

4-4c Show that Boris’ rotation satisfies the equation of motion 4-3(9), if t = gBA1,

4-5 APPLICATION TO ONE-DIMENSIONAL PROGRA

In programs with one dimension x and with two velocities, v, a
allow a magnetic field B,, the motion is all perpendicular to B. He
the vector equations of the previous sections, we obtain the 1
rotate-accel algorithm in Section 2-4.

A program with one dimension and with three velocities 1d3v
up as shown in Figure 4-5a. Let B, (constant, uniform) be in the
and make an angle 6 with the z axis. The self-consistent E and
along x, normal to the sheets. If we stopped here, then the pe;
motion in z could be ignored (F, =0). However, on occasion !
interested in applying an electric field E.,, along y which produces
in turn produces an F, = —qv, B, and a z drift, (vg), = — (E¢),
point of the exercise is to include both v, and v, as well as k; anc
model. It is convenient to have the motion solved for in the p
perpendicular directions, which leads to the invention of the x' c
1 to By, at angle @ with respect to x). Call the field due to tt
Eceifconsistent = Esc. Then the fields are:

Esc = iEsc = i'Esc cosf + B(}ESC sin @
Eext = 5’Eext
B = Bo

The equations of motion in the (x', y, By) coordinates are integr:
accel-rot-accel method, as follows

Vx

=t —A1/2) + %—A—tEsc cos 6

2



